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ABSTRACT 

Protecting maize crops from devastating plant diseases ensures global food security. 

Accurate disease identification is essential for implementing effective control measures. 

However, traditional visual analysis of symptomatic leaves used by maize farmers in 

Kenya is time-consuming, costly, subjective and prone to errors. Embracing computer 

vision technologies, such as deep learning and machine learning, offers promising 

solutions to these challenges, enhancing crop productivity. The general objective of this 

study was to develop models for maize lethal necrosis (MLN) disease, maize streak 

disease (MSD) and Gray leaf spot diseases (GLS) detection and classification using 

AlexNet and ResNet 50 convolutional neural networks (CNN) architectures and machine 

learning Support Vector Machine (SVM). The specific objectives of this study were to: 

identify maize leaf disease (MLN, MSD and GLS) using AlexNet, ResNet-0 and SVM 

models, to evaluate the performance of the AlexNet, ResNet-50 and SVM models in the 

classification of MLN, MSD and GLS. Digital maize leaf disease images were collected 

from maize farms in Embu County, resulting in a dataset of 3200 images, with 800 

images for each disease category. The results indicate that AlexNet and ResNet50 

achieved high accuracy in identifying maize leaf diseases, recording average accuracies 

of 98.3% and 96.6%, respectively. In contrast, the SVM model exhibited the lowest 

average accuracy of 85.5%. AlexNet demonstrated exceptional accuracy in classifying 

Maize Streak Virus (MSV) with a rate of 99.85%, followed by ResNet50 at 99.2%. 

Conversely, SVM had a lower recall value of 81.7% for Grey Leaf Spot disease. By 

incorporating these advanced models, farmers and stakeholders in maize crop protection 

can identify diseases early, allowing for timely interventions and improved disease 

management strategies. Consequently, this will lead to increased maize productivity and 

enhanced crop quality. Early disease detection also facilitates the judicious use of 

pesticides, safeguarding the environment and human health. The findings underscore the 

importance of leveraging these technologies to enhance food security, optimize 

agricultural practices, and promote sustainable maize production. 



1 

 

CHAPTER ONE 

 INTRODUCTION 

1.1 Background of the Study 

Maize (Zea mays) is a globally cultivated crop with an annual production of 

approximately 1137 million metric tons (Erenstein et al., 2022).  In Kenya, maize is 

significant in food security, serving as a vital source of income and employment for 

small-scale and large-scale farmers. However, despite an increase in the area of maize 

production in Kenya over the past decade, the total output remains low at 11.7t ha-1 

compared to its potential of 40 t ha-1 (FAOSTAT, 2021). The significance of maize 

cultivation transcends mere agricultural pursuits; it constitutes a pillar supporting food 

security, income generation, and employment opportunities for small-scale and large-

scale farming communities across Africa, with Kenya as a notable example (Nosipho & 

Mpandeli, 2021). 

 

Maize leaf diseases, attributed to viral and fungal agents, represent formidable challenges 

to maize production (Kitonde et al., 2019). Maize lethal necrosis (MLN) disease and 

maize streak disease emerge as destructive viral pathogens among these disorders 

(Bernardo et al., 2021). MLN occurs rapidly and has a devastating impact, causing the 

yellowing and wilting of leaves, leading to necrosis (Batchelor et al., 2020). Conversely, 

Maize streak disease results in leaf characteristic streaking and discolouration, 

significantly impairing photosynthesis and yield (Drechsler et al., 2014). 

 

Furthermore, Grey leaf spot (GLS) disease, triggered by Cercospora fungal species (Kibe 

et al., 2020), contributes to the compounding menace. GLS manifests as small, 

rectangular lesions with grey centres encircled by a dark border, compromising the plant's 
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photosynthetic efficiency and weakening its overall vigour (Paul, 2003). This disease 

often attains its peak severity during high humidity and frequent rainfall (Vines et al., 

2020, Paul, 2003). 

 

These disease entities collectively impose substantial yield losses, impacting Kenya's 

maize production. Reports from Batchelor et al., (2020) and Charles et al., (2019) 

corroborate that these diseases are responsible for yield reductions ranging from 40% to 

100% across the country. These yield losses can lead to dire consequences for both small-

scale and large-scale farmers, undermining food security, livelihoods, and economic 

stability. Effective disease management strategies, therefore, become indispensable to 

mitigate these losses and bolster maize production in Kenya.   

 

Identifying maize diseases entails various approaches, but the most straightforward and 

widely adopted method is visualising symptomatic leaves (Natesan et al., 2022). Early 

crop disease detection is paramount as it empowers farmers to swiftly initiate requisite 

control measures, including carefully selecting appropriate pesticides. This proactive 

approach increases crop yield and enhances overall produce quality (Dubois et al., 2021; 

Rocha et al., 2020). 

 

Farmers commonly scrutinise disease symptoms evident on leaves to recognise and 

categorise crop diseases (Matinuu Sigit et al., 2022). However, this technique does 

present inherent limitations. Its subjectivity introduces room for errors, and its time-

intensive nature adds to operational complexities. Particularly for resource-constrained 

rural farmers, its associated costs, which may involve consulting a trained plant 

pathologist to confirm disease presence, can be a substantial burden (Waheed et al., 

2020). This challenge becomes more pronounced in scenarios of multiple infections, 
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where accurate diagnosis becomes increasingly intricate. The financial implications 

increase further as the costs associated with engaging trained professionals for disease 

confirmation add to the already strained resources of farmers. These drawbacks 

undermine disease identification accuracy. However, the accuracy of disease diagnosis 

cannot be overstated, as it constitutes the foundation for effective control measures. 

Selecting the appropriate pesticides, instituting timely interventions, and applying disease 

containment strategies all hinge on precise disease identification, as explained by Rocha 

et al., (2020). 

 

Furthermore, the potential for misdiagnosis carries far-reaching repercussions. Erroneous 

disease identification can result in the inappropriate use of pesticides, not only 

squandering resources but also potentially endangering environmental contamination 

through improper disposal. Such contamination can adversely affect humans and non-

target organisms, amplifying the ecological toll of disease mismanagement (Gunstone et 

al., 2021). While the visual analysis of symptomatic leaves serves as a fundamental tool 

for disease identification, its limitations underscore the need for more advanced and 

accurate methods in contemporary agricultural practices (Natesan et al., 2022). 

 

Consequently, an apparent necessity arises to enhance the precision, effectiveness, and 

accessibility of maize leaf disease identification within Kenya. Among the most 

promising avenues for surmounting the challenges outlined above, computer vision-based 

automatic systems offer an approach with substantial potential to mitigate losses and 

augment productivity (Owino, 2023). Recent years have witnessed the dominance of 

machine learning and deep learning techniques, carving a niche in identifying plant 

diseases through digital images (Kumar et al., 2022). 
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In contrast to traditional methods, these modern techniques offer a paradigm shift. While 

traditional machine-learning approaches necessitate the extraction of features from 

afflicted plant images such as leaf colour, texture, and shape for training classifiers, 

contemporary methodologies embrace the inherent richness of image data (Bashir et al., 

2019). Machine learning models leverage this data directly, automatically extracting 

intricate and often imperceptible patterns and features. This, in turn, enables the 

development of robust and precise models that can discern even subtle indications of 

disease presence (Bashir et al., 2019). 

 

Furthermore, deep learning techniques, a subset of machine learning, have demonstrated 

particular prowess in handling image-centric datasets. Their capacity to learn hierarchical 

representations of data, moving from low-level features like edges to higher-level 

concepts such as shapes and objects, bolsters their performance in distinguishing between 

healthy and diseased plants (Purwono et al., 2023). This affords these techniques a 

distinct advantage over traditional methods, as they can identify even incipient stages of 

disease development, circumventing the limitations of human-perceptible symptom 

recognition (Hernández et al., 2021). 

 

In recent applications, these approaches have showcased considerable success in 

addressing the challenges posed by plant diseases. They enable rapid and accurate disease 

identification, paving the way for timely interventions (Liu, 2023). Moreover, their 

adaptability and scalability make them well-suited for various agricultural contexts, from 

small-scale to large-scale farming operations. Through their automated and data-driven 

nature, these methods hold great promise in elevating agricultural productivity and 

fostering sustainable practices by facilitating precise pesticide application, reducing 
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environmental impact, and ensuring optimal resource utilization (Omkar, 2023). These 

approaches have been widely employed in identifying diseases like leaf blotch, powdery 

mildew and rust (Genaev et al., 2021).  

 

Machine learning techniques such as Support Vector Machine (SVM), Decision Tree 

(DT), K-Nearest Neighbors (K-NN), and Random Forests (RF), have been commonly 

adopted for crop disease classification due to their established efficacy (Jasrotia et al., 

2023). Nevertheless, these techniques encounter inherent limitations when detecting 

disease in its early stages. Factors like lighting conditions and occlusion can substantially 

compromise their ability to accurately recognize diseases, thereby undermining their 

utility in early diagnosis (Yu et al., 2023; Khan et al., 2021). 

 

This is where deep learning methods emerge as a transformative alternative. Their 

inherent architecture, particularly Convolutional Neural Networks (CNNs), capitalizes on 

the innate structure of image data, enabling them to automatically identify intricate 

patterns and features that may elude traditional machine learning techniques. This 

capability significantly enhances the efficiency of disease recognition (Khan et al., 2021). 

Furthermore, the adaptability of deep learning models to complex and high-resolution 

images gives them a distinct advantage. These models can process an extensive array of 

data inputs, making them particularly suitable for datasets with a rich visual context, as 

with plant disease images (Bousset et al., 2019). This adaptability positions deep learning 

models, especially CNNs, as potent tools for addressing the nuances and complexities 

associated with disease identification in the agricultural domain (Bousset et al., 2019). 
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 Significant efforts have been witnessed in developing automated systems for recognizing 

crop diseases through adept computer vision techniques. Too et al., (2019) conducted a 

comparative analysis using diverse pre-trained CNN models. Remarkably, their efforts 

culminated in an astounding accuracy of 99.75%, achieved by these models in classifying 

an extensive array of 38 plant disease categories. 

 

Equally noteworthy is the work of Zhang et al., (2022), who demonstrated the impact of 

CNN architectures by strategically employing data augmentation techniques. By doing 

so, they classified eight distinct maize leaf diseases, demonstrating the potential of CNNs 

to refine disease identification within specific agricultural contexts. Alehegn et al., (2019) 

capitalized on machine learning support vector machines. Their approach was anchored 

in training a model using leaf colour and coarseness features, which proved effective in 

categorizing maize leaf diseases on Ethiopian maize farms. 

 

Despite these strides, it is discernible that research in the realm of CNN models' 

application for maize leaf disease classification, particularly within Kenya's agricultural 

landscape, remains relatively sparse. We focus on a rigorous evaluation of transfer 

learning performance, expertly harnessing two potent CNN architectures: AlexNet and 

ResNet50. Through this endeavour, we aim to chart a course for successfully identifying 

maize leaf diseases. This area holds immense promise for revolutionizing disease 

management strategies within the specific context of Kenya's maize production 

landscape. 

 

1.2 Statement of the Problem 

Ensuring crop health is paramount in the broader context of global food security, with 

plant diseases emerging as a substantial obstacle to maize's sustainable and productive 
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cultivation (Savary et al., 2017). The identification of diseases affecting maize crops 

remains predominantly on visual scrutiny of symptomatic leaves, as Natesan et al. (2022) 

highlighted. This conventional practice has inherent shortcomings that impede its 

efficiency and reliability. Time, a valuable asset, is used excessively, making the process 

challenging and not financially viable. Additionally, the subjective nature of this method 

affects diagnosis accuracy, as outcomes can differ significantly depending on the 

observer's skill and knowledge, a weakness emphasized by Waheed et al., (2020). 

 

Computer vision and machine learning technologies have ushered in a new era of 

possibilities, offering potent remedies to counter the existing challenges (Owino, 2023). 

Deep learning and Convolutional Neural Networks (CNNs) are promising among these 

cutting-edge technologies. CNN models have exhibited their prowess in autonomously 

assimilating intricate image features and attaining high accuracy levels in disease 

identification across diverse fields (Kumar et al., 2022). This remarkable capacity to 

discern complex patterns within images augments their potential to revolutionize disease 

diagnosis and pave the way for more efficient agricultural practices. 

 

Despite the strides made in CNN technology, their tailored implementation for the unique 

spectrum of maize leaf diseases prevalent in Kenya has yet to be explored. This presents 

a novel opportunity to bridge this research gap and unlock the latent benefits of these 

advanced techniques for better maize farming in the region. 

 

This study aims to bridge this gap by investigating the effectiveness of deep-learning 

CNN models, such as AlexNet and ResNet-50, in identifying and classifying maize leaf 

diseases in Kenya. By leveraging these advanced technologies, the research endeavours 
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to provide farmers with an accurate and efficient tool for early disease detection, enabling 

timely interventions and improving overall maize crop productivity and quality. 

 

1.3 Objectives of the Study 

This research sought to achieve the following objectives: 

1.3.1 General Objective 

The general objective of this study was to identify and classify three maize leaf diseases 

(MLN, MSD and GLS) using CNN architectures (AlexNet and ResNet50) and Support 

Vector Machine (SVM). 

1.3.2. Specific Objectives 

The specific objectives were: 

i. To identify maize  leaf diseases (MLN, MSD and GLS) using AlexNet  ResNet-

50 and SVM models 

ii. To evaluate the performance of the AlexNet, ResNet-50 and SVM models in the 

classification of MLN, MSD and GLS. 

1.4 Research Questions 

The research questions were: 

i. What is the efficiency of AlexNet, ResNet 50 and SVM in maize leaf diseases 

(MLN, MSD and GLS) identification? 

ii.  What is the performance of the AlexNet, ResNet 50, and SVM in the 

classification of MLN, MSD and GLS?    
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1.5  Justification of the Study  

Maize is a vital staple crop in Kenya and plays a significant role in ensuring food 

security, income generation, and employment opportunities for small-scale and large-

scale farmers. However, the maize industry faces considerable challenges due to the 

prevalence of plant diseases such as MLN, MSV, and GLS. These diseases cause 

substantial yield losses and impact the country's overall productivity and sustainability of 

maize farming. 

The current methods for disease identification in maize crops heavily rely on visual 

analysis of symptomatic leaves by trained personnel and diagnostic techniques such as 

enzyme-linked immunosorbent assays (ELISA) and polymerase chain reaction (PCR) 

methods. However, these traditional approaches are time-consuming, subjective and 

costly (Zhou et al., 2022). The accuracy and efficiency of disease identification are 

crucial for implementing appropriate disease control measures, selecting suitable 

pesticides, and implementing timely interventions. Unfortunately, the limitations of 

visual analysis impede the effective and efficient identification of maize leaf diseases, 

leading to suboptimal disease management strategies. 

In recent years, computer vision and machine learning technologies, particularly deep 

learning and Convolutional Neural Networks (CNNs) have shown promising potential in 

disease identification and classification across various domains. These advanced 

technologies can automatically learn image features and achieve high levels of accuracy. 

However, their specific application for maize leaf disease identification in Kenya remains 

understudied, with limited research available. 
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Therefore, this study aims to address these gaps and provide a comprehensive 

investigation into the efficacy of deep learning CNN models, specifically AlexNet and 

ResNet-50, for identifying and classifying maize leaf diseases in Kenya. By leveraging 

these advanced technologies, the research seeks to develop an accurate, efficient, and 

automated tool for early disease detection in maize crops. This tool will provide timely 

and reliable information to farmers and other stakeholders involved in maize crop 

protection/ production. It will enable them to implement appropriate disease control 

strategies, minimize yield losses, protect the environment, and ensure sustainable maize 

production. 

Therefore, this study aims to address the current understanding and knowledge gaps 

systematically. This entails conducting an in-depth investigation into the effectiveness 

and capacity of deep learning CNN models, emphasising the AlexNet and ResNet-50 

architectures in particular. The main goal is to determine these advanced models' 

applicability and effectiveness in identifying and classifying native Kenyan maize leaf 

diseases. 

This research seeks to open the path for designing a creative and automated solution by 

utilising these cutting-edge technological innovations. This method is intended to be a 

precise and effective technique for the early identification and classification of diseases 

within maize crops. The strength of deep learning and CNNs support it. This innovative 

technology aims to provide timely, accurate, and reliable information to farmers and 

other stakeholders involved in maize crop security. This knowledge will be a crucial 

advantage, enabling them to rapidly implement accurate disease control measures and 

effectively mitigate possible yield losses. 
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The effects of this work transcend beyond its direct agricultural advantages, too. Once 

developed, the automated tool can promote disease management strategies that 

are environmentally friendly. It has the potential to dramatically minimise the ecological 

footprint associated with excessive pesticide application by permitting rapid responses 

and the wise use of resources. This strategy supports a larger vision of environmental 

protection and sustaining a healthy balance between crop yield and ecological well-being 

while enhancing agricultural sustainability. 

Cultivating sustainable maize in Kenya is the study's primary goal; this is how it is 

ultimately expected to be completed. The study seeks to promote a change in disease 

identification by providing stakeholders with cutting-edge technology tools and 

knowledge, enabling preventive measures that protect both crop yields and the 

sustainability of the environment. 
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1.6 Scope of the study 

This study primarily analyses maize leaf image features and their significance in 

identifying and categorizing maize leaf diseases. The research compares two 

Convolutional Neural Network (CNN) architectures, AlexNet and ResNet50, with 

Support Vector Machine (SVM), a machine learning technique applied to computer 

digital images.  

This study justifies its scope by emphasizing the critical importance of understanding 

maize leaf image features for identifying and classifying maize leaf diseases. It highlights 

the relevance of this research to agriculture, especially in regions where maize is crucial 

for food security and economic stability. The study's focus on advanced technologies like 

Convolutional Neural Networks (CNNs) and the comparison with traditional methods 

like Support Vector Machine (SVM) underscores its contemporary significance. 

Furthermore, it addresses the research gap in applying CNNs to maize leaf diseases, 

particularly in specific geographical contexts like Kenya. The practical implications of 

this research extend to both small and large-scale maize farming, offering the potential 

for improved disease management and enhanced crop quality. Lastly, the study's 

contribution to the broader fields of computer vision and agricultural technology is 

emphasised, emphasising its potential to advance disease management strategies and 

support sustainable maize production for the benefit of farmers and the agricultural 

sector. 

1.7 Limitations of the Study 

An in-depth examination of the variety of characteristics found in photographs of maize 

leaves and their essential role in accurately detecting and categorizing maize leaf diseases 

i.e. maize lethal necrosis (MLN), maize streak virus (MSV) and grey leaf spot (GLS) 
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forms the basis of this study. To achieve this goal, the research compares and contrasts 

the performance of two cutting-edge Convolutional Neural Network (CNN) designs, 

AlexNet and ResNet50. The performance of Support Vector Machine (SVM), a widely 

utilized machine learning method capable of processing digital images, is added to this 

comparison analysis. 

In the design of this study, the SVM model is carefully trained by including essential 

information collected from pictures of maize leaves. These cover three characteristics: 

leaf colour, texture, and shape. By aligning with the strategy suggested by (Pujari et al., 

2016), this cutting-edge feature extraction method gives the research a strong basis based 

on tried-and-true approaches. 

Nevertheless, it is critical to acknowledge and openly discuss the limitations of this study. 

Although carefully detailed within its stated goal, this research is limited to the diseases 

(MLN, MSV and GLS) and does not broaden its investigation to include the wide range 

of potential plant diseases or other agricultural crops. Therefore, even though the 

knowledge gained from this study provides an invaluable understanding of the 

complexities of the three maize diseases and their detection through cutting-edge 

technology, it is still prudent to recognize that the findings may not directly apply to other 

plant species or diseases. When attempting to apply the findings of this study to more 

general agricultural contexts, some caution is required because the precise symptoms and 

traits that define diseases in different plants or crops can differ. The work intentionally 

focuses on the specific area of the maize leaf diseases, deepening our understanding 

within this field and highlighting the necessity for more focused research to examine 

similar characteristics across various plant species and diseases. 



14 

 

The photographs used in this study, which came only from maize farms in Embu County, 

served as a boundary for its scope. Although careful efforts were made to collect a wide 

variety of photos of infected maize leaves, it is important to recognize that the results 

might not fully capture the full range of maize leaf diseases present in many other 

geographic regions. 

Although the photos from Embu County serve as a useful starting point for the study's 

inquiry of the maize leaf diseases in that particular area, the intrinsic levels of the 

diseases, in terms of severities, could potentially present differently in other locations. 

Different symptoms of the diseases may occur in various geographical regions due to 

variations in climate, conditions of the soil, agronomic practices, and the presence of 

associated diseases. 

As a result, even while the study's findings provide important new information, it is 

prudent to acknowledge that they may not be universally extended to reflect the whole 

spectrum of the three leaf diseases across other geographies. When attempting to 

generalize the study's findings to larger maize-growing regions, one must take into 

account the study's sample size and geographic focus because research into plant diseases 

consequently takes into account the complex interplay of various ecological factors. 

Furthermore, it's critical to note that various factors may potentially impact the 

effectiveness and application of the generated models. The complex interactions between 

variables, including changes in lighting, differences in image quality, and the potential 

occurrence of occlusions or instances of overlapping symptoms within the images, may 

adversely affect the accuracy and adaptability of the disease identification and 

classification process. 
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For instance, various colours and intensities of light can be put upon the images, 

changing how colour and texture are perceived. The capacity of the models to distinguish 

between healthy and diseased leaves may be subject to errors due to this variability. 

Similarly, differences in image quality, including elements like resolution and focus, may 

significantly impact how well the models can detect and interpret minute visual clues 

suggestive of the presence of disease. Additionally, due to the complexities of real-world 

conditions, it is possible for leaves to display many disease symptoms at once or to get 

partially veiled, resulting in obstructions. Due to the possibility of inaccurate isolation or 

classification of overlapping symptoms, this occurrence could potentially disrupt the 

models' recognition process. 

Finally, it's critical to point out that the primary goal of this study was to apply computer 

vision and machine learning approaches solely to identifying maize leaf diseases. 

Although these methods have great potential to transform disease recognition, it's 

important to remember that the bigger picture of disease management involves intricate 

aspects beyond simple identification. 

The selection and implementation of the best disease control strategies, for example, fall 

outside the realm of this study. Factors that go far beyond the scope of identification 

are required to select the appropriate actions to reduce disease outbreaks and the 

subsequent impact of these strategies on crop yield. These characteristics include the 

local climate, socioeconomic circumstances, and the success rate of various interventions 

in different scenarios. It is important to understand that while this study offers a 

fundamental cornerstone in identifying maize leaf diseases, the full domain of disease 

management contains an array of factors that call for independent scientific proposals.  
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CHAPTER TWO 

      LITERATURE REVIEW 

 

2.1 Introduction 

This chapter aims to comprehensively review the literature on maize production, 

constraints in maize cultivation, maize diseases, their causative agents, and the symptoms 

exhibited upon infection. Additionally, this chapter will focus on both traditional and 

digital image processing techniques and classification algorithms that have been 

employed to aid in identifying maize diseases. A comprehensive understanding of the 

current knowledge and research gaps can be established by reviewing the existing 

literature in this field. 

 2.2 Maize Production in Kenya  

Maize is a globally significant cereal food crop, ranking third after wheat and rice 

(FAOSTAT, 2021). In sub-Saharan Africa, it holds paramount importance as a crucial 

food and income source for over 300 million smallholder households (Oyewale et al., 

2020). Consequently, the national food security of Kenya heavily relies on the production 

of an adequate maize supply to meet the ever-increasing national demand (FAOSTAT, 

2021). 

The total land area dedicated to maize cultivation in Kenya amounts to approximately 1.5 

million hectares, with around 70-80% of maize being produced by small-scale farmers 

who achieve an average on-farm production of 1.5-2.6 tons per hectare (Kiponda et al., 

2023). However, maize production in the country faces numerous constraints, including 

the presence of insect pests, weeds, diseases, and various abiotic factors that limit its 
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growth and yield potential (Simtowe et al., 2021). These factors collectively pose 

significant challenges to the productivity and sustainability of maize farming in Kenya. 

2.3 Plant Diseases as a Threat to Maize Production 

Significant threats to maize crops include grey leaf spot (GLS), maize lethal necrosis 

(MLN), maize streak virus (MSV), and ear rots. Various pathogens, including bacteria, 

fungi, and viruses, cause these diseases. They pose a significant challenge to the farming 

of maize. The most dangerous viruses among them are MLN and MSV, which cause 

severe damage to maize crops. They have a significant negative impact on the 

plant's health and yield. Additionally, fungi infections like GLS worsen the situation by 

reducing a plant's capacity to produce food through photosynthesis. 

Real-world consequences of all of these problems include decreased maize production 

and quality. It is evident that these diseases have negative impacts on more than just 

agriculture; they also have negative effects on many people's ability to obtain food. 

Finding solutions to these diseases is therefore urgent. This entails correctly identifying 

them, controlling their spread, and developing solutions that mitigate their effects. By 

taking these measures, maize farming is protected from these harmful diseases and is 

more sustainable, ensuring enough food for everyone. 

2.3.1 Maize Lethal Necrosis (MLN) Disease 

The emergence of maize lethal necrosis (MLN) disease was initially documented in 

Bomet County, Kenya, in 2011 (Wangai et al., 2012) and has since spread into other 

maize-growing areas of Kenya (Fig 2.1). MLN is the result of multiple infections in 

maize plants by maize chlorotic mottle virus (MCMV) along with any of the potyviruses 

such as Sugarcane mosaic virus (SCMV), Maize dwarf mosaic virus (MDMV), or Wheat 
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streak mosaic virus (WSMV) (Bernardo et al., 2021). The co-infection of these two 

viruses leads to the development of MLN, also known as Corn Lethal Necrosis (CLN) 

(Wamaitha et al., 2018). The transmission of MLN occurs through various insect vectors, 

including maize thrips (Frankliniella williamsi Hood), while aphids have been reported to 

contribute to the proliferation of SCMV (Mwando et al., 2018). Although the 

transmission rate of MLN through contaminated maize seeds is low (Bernardo et al., 

2023), it remains a potential transmission route. MLN poses a significant threat to maize 

crops, causing severe yield losses and impacting farmers' 

livelihoods.

Figure 2.1 Distribution and losses affiliated by MLN in Kenya. Source De Groote et al, 

2016 

Maize crops in Kenya have been reported to suffer yield losses of up to 100% (Awata et 

al., 2021), while in Peru, losses of 59% and in the Democratic Republic of Congo, losses 

ranging from 40% to 80% have been observed (De Groote et al., 2016). Maize plants 

https://openagriculturejournal.com/contents/volumes/V12/TOASJ-12-215/TOASJ-12-215_F1.jpg
https://openagriculturejournal.com/contents/volumes/V12/TOASJ-12-215/TOASJ-12-215_F1.jpg
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infected with maize lethal necrosis (MLN) exhibit various characteristic symptoms. 

These include chlorotic mottling on the leaves, initially affecting young leaves at the 

whorl stage (Karanja et al., 2018). The mottling can range from mild to severe, 

accompanied by stunting of the plants and premature ageing (Awata et al., 2019). 

Necrotic lesions develop from the leaf margins towards the midrib, and young leaves in 

the whorl can experience necrosis, leading to the distinct 'dead heart' symptom. 

Ultimately, the entire plant may dry up (Awata et al., 2019). Severely affected plants 

often exhibit reduced cob size or fail to set grain (Figure 2.2). These symptoms 

collectively contribute to significant yield reductions and seriously threaten maize 

production. Understanding the symptoms of MLN is essential for early detection and 

effective management of the disease. Several control measures have been implemented to 

reduce the impact and spread of MLN disease in Kenya. These include quarantining 

maize from infected regions to prevent the movement of infected seeds, plants, or soil 

(Mudde et al., 2019). Crop rotation with non-host crops such as beans, cowpeas, or 

sorghum breaks the disease cycle and reduces the inoculum load (Xu et al., 2022). Use 

certified, clean seeds and hybrid, tolerant plants screened and tested for MLN resistance 

(Awata et al., 2022). Stringent monitoring and surveillance of MLN occurrence and 

distribution using rapid diagnostic kits and remote sensing (Richard et al., 2021; Biswal 

et al., 2022). Insecticide application to reduce the transmission of MLN by insect vectors 

such as thrips, aphids and leaf beetles (Wamonje et al., 2020). These control measures 

have contributed to the recent decline of MLN disease in Kenya. However, there is still a 

need for continuous research and development of more effective and sustainable 

strategies to combat MLN, such as genetic engineering, gene editing, biological control, 

and integrated pest management (Alemu, 2020). 
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(a)                                     (b)                                       (c) 

   

(d)                                     (e)                                      (f) 

Figure 2.2.  Disease symptoms of MLN.(a) Mosaic and Mottling (b) Dead Heart (c) 

Shotened Internodes (d) Premature drying of the leaf sheath (e) Sterile Tassel (f) 

Premature drying husk. Source De Groote et al, 2016 

2.3.2 Maize Streak Disease (MSD) 

Maize streak virus (MSV) is considered one of the most severe viral diseases affecting 

maize crops, leading to significant yield reductions and threatening african food security 

(Tembo et al., 2020). The first reported case of MSV occurred in central Kenya, and 

since then, the disease has spread to other maize-growing regions in mid-altitude 

ecological zones (Charles, 2019). Under natural infection conditions, yield losses due to 

MSV in sub-Saharan Africa can reach up to 100% (Ketsela et al., 2022). 

 

Symptoms of MSV are characterized by chlorotic stripes on maize leaves, which 

ultimately reduce the leaf's photosynthetic area, depending on the severity of the disease 

(Drechsler et al., 2014). To effectively control and manage MSV, it is essential to have 
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robust and sensitive diagnostic tests capable of rapidly detecting the presence of MSV 

(Tembo et al., 2020). Rapid and accurate detection methods enable early intervention and 

implementation of appropriate disease management strategies to minimize yield losses 

and protect maize crops (Paliwal & Joshi, 2022).  

Several control measures have been implemented to reduce the impact and spread of 

MSV disease in Africa. These include quarantining maize from infected regions to 

prevent the movement of infected seeds, plants, or soil. Crop rotation with non-host crops 

such as legumes, cereals, or vegetables to break the disease cycle and reduce the whitefly 

population (Karavina, 2014). Field hygiene and early planting to avoid overlapping crops 

and reduce infection chances 24. Use of certified, clean seeds and tolerant or resistant 

maize varieties that have been screened and tested for MSV resistance (Martin & 

Shepherd, 2009). Insecticide application to reduce the transmission of MSV by 

whiteflies, especially during the early stages of crop growth (Karavina, 2014). These 

control measures have contributed to the management of MSV disease in Africa in recent 

years. However, there is still a need for continuous research and development of more 

effective and sustainable strategies to combat MSV, such as genetic engineering, 

biological control, and integrated pest management (Alemu et al., 2020). 

The prevalence of MSD and its detrimental impact on maize production highlight the 

urgent need for improved disease management approaches. Developing effective 

strategies for MSD control requires a comprehensive understanding of the disease's 

epidemiology, transmission dynamics, and host-pathogen interactions. Furthermore, 

developing reliable detection tools will aid in the early detection and timely 

implementation of control measures, contributing to enhanced food security and 

sustainable maize production in affected regions (Stutsel et al., 2021). 
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2.3.3 Grey Leaf Spot Disease  

Grey leaf spot disease is a fungal infection caused by Cercospora zeae-maydis and is one 

of the most destructive diseases affecting maize crops (Yu et al., 2018, Kinyua et al., 

2011). The first report of GLS in sub-Saharan Africa was documented in South Africa in 

1990, leading to significant losses of up to 60% (Paul et al., 2003). The disease spread to 

other regions, including Uganda in 1994 and Zimbabwe in 1995 (Dunkle and Levy, 

2000). In Kenya, GLS has been reported to cause maize yield losses of up to 37% 

(Kinyua et al., 2011). 

The characteristic symptoms of GLS manifest as lesions on older maize leaves, 

exhibiting a colour change to pale brown or grey-tan, mainly concentrated along the veins 

(Paul, 2003). Severe outbreaks of GLS can result in considerable losses due to reduced 

photosynthesis and impaired grain fill. The severity of the disease is heavily influenced 

by favourable environmental conditions, such as warm temperatures and high humidity 

(Vines et al., 2020, Paul, 2003).  

Several control measures have been implemented to reduce the impact and spread of GLS 

disease in Kenya. These include destroying plant debris after harvest to eliminate the 

primary source of inoculum. Crop rotation with non-host crops such as legumes, cereals, 

or vegetables to break the disease cycle and reduce the fungal population (Kaya, 2022). 

Using certified, clean seeds and more tolerant or resistant maize varieties screened and 

tested for GLS resistance (Chung et al., 2011). Applying fungicides, especially during the 

early stages of crop growth, protects the plants from infection and reduces the 

transmission of GLS by wind or rain (Aguado et al., 2018). These control measures have 

contributed to the management of GLS disease in Kenya in recent years. However, there 

is still a need for continuous research and development of more effective and sustainable 



23 

 

strategies to combat GLS, such as biological control, integrated pest management, and 

genetic engineering (Alemu et al., 2020). 

To mitigate the yield losses caused by GLS and other similar diseases, the accurate and 

efficient identification of the disease is of utmost importance. Early detection is crucial 

for implementing timely and effective disease management strategies, including 

fungicides and other control measures. By promptly identifying and addressing the 

presence of GLS, maize farmers can minimize the impact of the disease on crop yield and 

overall agricultural productivity (Ma et al., 2022) 

2.4 Traditional Approaches for Identification Maize Leaf Disease  

Conventional techniques for identifying maize leaf diseases have historically employed 

diverse methodologies, including visual assessments conducted by seasoned pathologists 

and serological methods like Enzyme-Linked Immunosorbent Assay (ELISA) and 

Polymerase Chain Reaction (PCR)-based techniques. However, these well-established 

methods have limitations that hinder their practicality in routine disease management 

(Elfatimi et al., 2022). 

The main drawbacks include time-consuming procedures that demand a significant 

amount of time. Furthermore, these techniques frequently call for destroying plant 

samples, damaging the plant and making it unsuitable for future growth. Another issue is 

the lack of real-time monitoring capabilities, which prevents the prompt intervention 

necessary for disease control. Additionally, these methods are unlikely to be effective 

when a single plant may be affected by multiple diseases, which could result in incorrect 

diagnoses (Khakimov et al., 2022). 
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Therefore, it is crucial to develop a simple, unobtrusive framework that can quickly 

identify and categorize maize leaf diseases (Owino, 2023). A paradigm shift of this 

nature might usher in innovative disease monitoring, providing real-time insights that 

enable prompt and focused interventions, and effectively reducing the disease's impact on 

maize crop yield (Khakimov et al.,  2022). 

The significance of early disease detection cannot be overstated, as it bestows farmers 

with the power of foresight. This timely awareness empowers them to enact measures 

with surgical precision, such as judiciously deploying fungicides and insecticides, thereby 

averting excessive usage and resultant economic losses (Dubois et al., 2021; Rocha et al., 

2020). The financial ramifications extend beyond the immediate - resource efficiency and 

contribute to substantial cost savings while aligning with sustainable agricultural 

practices. 

Beyond the realm of economics, this paradigm shift holds I each crop dientrinsic 

ecological value. Adopting such a model by reducing unnecessary chemical applications 

aligns with a broader commitment to environmental protection. This virtuous cycle 

safeguards not only the health of the environment but also the well-being of humans and 

the diversity of life, curtailing the inadvertent consequences of overzealous chemical 

usage (Gunstone et al., 2021). 

2.5 Computer Based Vision Digital Images in Crop Diseases Identification 

Adopting affordable and powerful digital computing solutions has gained much 

popularity due to the weaknesses in manual disease identification methods (Xie et al., 

2020). The transformational power of digital image processing ushers in an era where 

visual information is enhanced and harnessed for human interpretation and machine 
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comprehension, improving image data storage, transmission, and representation (Singh et 

al., 2012). 

The journey through the landscape of digital image processing follows a structured path 

involving a sequence of well-defined stages. Commencing with image acquisition, where 

the digital realm captures real-world visual data, the process advances into pre-

processing, a critical phase to refine and enhance raw image inputs. Subsequently, image 

segmentation dissects these enhanced images into distinct, meaningful components. 

Feature extraction follows, where relevant attributes are distilled from the segmented 

image, paving the way for the heart of the process - recognition and classification. Here, 

the extracted features are employed to differentiate and categorize the image in line with 

predefined classes (Too et al., 2019). In this digital milieu, two dominant methodologies 

stand tall: machine learning and deep learning techniques (Stančić et al., 2022). Machine 

learning is a versatile approach where algorithms learn from patterns within data and 

adapt their response accordingly. On the other hand, deep learning, a subset of machine 

learning, uses layers of interconnected nodes to interpret data hierarchically, grasping 

intricate patterns and nuances that might evade traditional approaches (Stančić et al., 

2022). 

2.6 Machine Learning Techniques in Plant Diseases Detection and Classification  

In digital agriculture, machine-learning techniques have swiftly emerged as potent tools 

for precise and efficient plant disease detection through the analysis of digital images 

(Kini et al., 2023). This innovative approach hinges on extracting and interpreting a 

multitude of digital image attributes, ranging from leaf colour to shape and texture, all 

intricately woven together to create a comprehensive profile (Liu & Wang, 2021; Khan et 

al., 2021). 
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The underlying mechanics of this technique are rooted in pattern recognition and learning 

from data. By systematically feeding the machine with an extensive array of digital 

images encompassing healthy and diseased plant samples, a robust algorithm learns to 

decipher the minute variations that set them apart (Genaev et al., 2021). Each image 

helps build a mental library of indicators that can indicate the presence of a disease. 

The beauty of machine learning lies in its capacity to rapidly process an immense volume 

of images, quickly identifying those nuanced features that elude human eyes. Once 

trained, the algorithm becomes a reliable classifier capable of independently assessing 

new images and delivering a verdict with remarkable accuracy (Yavuzer & Kose, 2022). 

This technology reduces the time required for disease identification and opens new 

avenues for large-scale monitoring and detection, heralding a transformative shift in how 

we safeguard agricultural productivity. 

However, it is crucial to recognize that while machine learning techniques offer 

remarkable capabilities, they have certain limitations that warrant consideration. For 

instance, these techniques might not be sensitive to detecting disease images in their 

initial stages of infection, which is a critical aspect of disease management (Khan et al., 

2021; Liu & Wang, 2021). 

Additionally, external factors can influence machine learning models' effectiveness. 

Variations in lighting conditions, for instance, can cast shadows or distort colours, 

potentially leading to erroneous assessments (Shoaib et al., 2023). Similarly, occlusion – 

when parts of the plant or image are obstructed can confound the model's ability to 

accurately perceive the image (Shoaib et al., 2023). These issues can collectively 

contribute to reducing the overall accuracy of disease recognition. 
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Understanding these limitations is essential to avoid overreliance on machine learning 

techniques without a comprehensive grasp of their intricacies. Moreover, it underscores 

the importance of holistic approaches that integrate these tools with complementary 

methods, creating a more robust and reliable disease detection framework that can 

effectively tackle various challenges. 

Various models serve as machine learning classifiers, with Support Vector Machine 

(SVM), Decision Tree (DT), K-Nearest Neighbors (K-NN), and Random Forests (RF) 

being among the commonly employed ones (Jasrotia et al., 2023). 

2.6.1 Support Vector Machine – a Machine Learning Model 

 

Support Vector Machines (SVM) are powerful tools within supervised machine learning, 

renowned for their adeptness in data analysis and pattern recognition (Yu & Kim, 2012). 

These models operate on robust learning algorithms meticulously crafted to dissect 

complex datasets and unveil discernible patterns that may not be readily apparent to the 

human eye. This remarkable trait makes them valuable assets for various analytical tasks, 

including classification and regression analysis (Kim et al., 2018). 

 

The true prowess of SVM is in its capacity to tackle diverse data scenarios. Not limited to 

linear data distributions, SVM can also proficiently navigate the intricacies of nonlinear 

data structures. This exceptional adaptability allows it to address the multifaceted 

complexities inherent in real-world datasets. Whether the data exhibits linear 

relationships or is characterized by intricate nonlinear correlations, SVM can aptly 

capture and distinguish these underlying patterns (Yu & Kim, 2012). 
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Support Vector Machines employ a strategic approach that elevates the original training 

data to a higher-dimensional space in classification. Within this augmented space, SVM 

meticulously constructs what is known as a hyperplane—a precise mathematical 

portrayal of a decision boundary that demarcates different data groups. This hyperplane 

plays a pivotal role as it effectively distinguishes one set of data from another, guiding 

the classification process (Spence & Fokas, 2010). 

SVM's skill is especially evident when data relationships are not linear. In such instances, 

SVM adopts a technique by mapping the data into a higher-dimensional realm. This 

mapping involves intricate transformations that unveil subtle patterns that may be 

obscured in the original data dimensions. SVM crafts the optimal hyperplane within this 

transformed space that effectively separates the distinct classes. This higher-dimensional 

hyperplane serves as a dynamic bridge between different data clusters, allowing for 

precision in classification (Han & Kamber, 2012). 

The key to SVM's effectiveness is its ability to identify support vectors and important 

data points that significantly impact where the decision boundary is placed. These vectors 

play a dual role: they define the decision boundary and maximize the gap between the 

data classes, enhancing the robustness of the classification. This concept is crucial as it 

not only aids in accurate classification but also bolsters the model's ability to handle new, 

unseen data with reliability (Bahari et al., 2014). 

By maximizing the margin distance between classes in the decision plane, SVM enhances 

the model's generalization capabilities and reduces the risk of overfitting (Prajapati & 

Patle, 2010). 
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2.7 Deep Learning Techniques in Plant Diseases Identification 

 

Deep learning techniques have arisen as a beacon of promise in surmounting the hurdles 

that conventional machine learning models encounter in plant disease identification (Liu 

& Wang, 2021). These innovative methods have demonstrated a remarkable capacity for 

achieving specificity and accuracy in discerning plant diseases (Drenkow et al., 2021). 

This prowess largely stems from their unique ability to extract intricate image features 

without laborious manual feature engineering autonomously (Xie et al., 2020). 

What sets deep learning apart is its innate capability to fathom complex patterns and 

relationships embedded within images. Unlike traditional methods that often necessitate a 

thorough process of hand-crafting features to suit the problem, deep learning models 

autonomously learn and refine these features from the data. This intrinsic aptitude 

enables them to capture even the subtlest cues that signify disease presence, culminating 

in heightened accuracy (He et al., 2022). 

The flexibility of deep learning models extends to their ability to handle vast amounts of 

data. This trait aligns perfectly with the demands of large-scale plant disease detection 

endeavours. In scenarios where datasets burgeon in size and complexity, these models 

remain unfazed, seamlessly scaling their processing capabilities to accommodate the 

abundance of information (Too et al., 2019; Khan et al., 2021). 

Recognition of plant diseases has seen widespread use of deep learning models, 

demonstrating the field's rapid development. Boltzmann's Deep Machine (DBM) (Hess et 

al., 2016), Deep Belief Networks (DBN) (Hasan et al., 2020), and Deep Convolutional 

Neural Networks (CNN) (Mushtaq et al., 2022) are a few examples of these models. 

Deep CNNs have attracted interest for their remarkable performance in plant disease 
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identification and classification, with precision rates of 99-99.2% (Lin et al., 2020; Stani 

et al., 2022).  

Deep CNNs are distinguished by their capacity to seamlessly combine the strength of 

convolutional neural networks with the fundamental principles of deep learning. These 

models can recognize even the most subtle signs of disease due to this combination's 

outstanding ability to recognize intricate patterns within images. Through this inherent 

ability, they can achieve remarkably high levels of accuracy in differentiating between 

healthy and diseased plants (Purwono et al., 2023). 

However, it's prudent to note that these acknowledged methods have prerequisites. Deep 

learning models, particularly Deep CNNs, utilize large training datasets and require a 

great deal of accurately labelled data to optimize their performance. When faced with 

diseases they had not encountered during their training, their effectiveness can diminish, 

making them less skilled at spotting new or emerging conditions (Ren et al., 2019).  

Numerous Convolutional Neural Network (CNN) architectures have been used to identify 

plant diseases, including AlexNet, ResNet, GoogleNet, and imageNet (Maeda-Gutierrez 

et al., 2021). Among these architectures, AlexNet and ResNet50 have demonstrated 

remarkable accuracy rates of up to 99% in plant disease recognition (Stančić et al., 2022). 

2.7.1 AlexNet CNN Architectures 

AlexNet is a Convolutional Neural Network (CNN) architecture developed in 2012 

(Antonellis et al., 2015). This model is well-known for its high specificity, speed, and 

accuracy in identifying plant diseases (Too et al., 2019). The input layer of AlexNet 

consists of a 227x227x3 colour image. The network comprises five convolutional layers, 

three pooling layers, three fully connected layers, and one activation layer (Stančić et al., 

2022). 
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AlexNet uses a dynamic approach to augment image data to strengthen its discernment 

capabilities. It carefully enters the image field and blends randomness into capturing a 

224x224 region. This foray carefully uses various transformative operations, such as 

flipping and mirroring. In addition to expanding the training data pool, this orchestration 

of manipulations also acts as a safeguard against the risk of overfitting that might 

otherwise impair the convolutional neural network's learning process (Ren et al., 2019). 

This augmentation technique is similar to giving the model access to various viewpoints, 

each revealing new aspects of the image. This multifaceted understanding promotes 

adaptability and allows the network to spot even the most minute patterns across multiple 

scenarios. The model has developed a greater generalization capacity, enabling it to 

navigate previously unknown images effectively (Li et al., 2022). 

 

The method AlexNet uses for image down-sampling, which is crucial for controlling 

computational complexity while preserving essential features, further sets it apart from 

competitors. In contrast to the usual average pooling, the model chooses a maximum 

pooling approach for this endeavour. This method avoids the dangers of image blurring 

that average pooling may unintentionally introduce, maintaining the image's essential 

characteristics (Too et al., 2019). 

 

In addition, a meticulous overlap and coverage strategy distinguishes AlexNet's approach 

to pooling. This process is designed with smaller step sizes than the pooling core's 

dimensions. This calculated manoeuvre orchestrates a planned overlap between the 

pooling layer's outputs, creating a diverse array of features that enhance the 

understanding of the model as a whole. This carefully organized coverage effectively 
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increases the network's accuracy because features are captured using a precision that 

mirrors the image's complex details (Stančić et al., 2022). 

 

In the network structure, an improvement over traditional CNNs is the addition of the 

Local Response Normalization (LRN) layer, which introduces a competition mechanism 

for the activity of local neurons (Du et al., 2016). The LRN layer increases the influence 

of more significant values in the image and reduces less influential parts, enhancing the 

model's generalisation ability. There are two more enhancements in the back-end part of 

the neural network (Wu, Guo & Yang, 2021). First, the Rectified Linear Unit (ReLU) is 

chosen as the activation function of the network. This piecewise linear function makes 

the forward calculation simple and efficient without requiring complex index calculations 

(Du et al., 2016). Second, dropout is used in the last few fully connected layers to 

randomly ignore some neurons, thus preventing the over fitting of the neural network 

model (Too et al., 2019). 

AlexNet efficiently utilises Graphics Processing Unit (GPU) acceleration to train deep 

convolutional networks, significantly improving the speed of network training and 

enhancing its overall performance (Zhang et al., 2019). Combining these features and 

improvements has made AlexNet a powerful tool for accurate and fast disease 

identification in plant health assessment. 

2.7.2 ResNet50 CNN Architectures 

ResNet50 is a deep convolutional neural network architecture introduced by Microsoft 

Research in 2015. It has since been widely used in various computer vision applications, 

such as picture classification, object recognition, and image segmentation (Rahman et al., 

2023). The "50" in ResNet50 denotes the number of layers in the network, which 
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includes convolutional layers, pooling layers, fully connected layers, and shortcut 

connections (Jiang et al., 2022). 

The integration of residual connections, also known as skip connections, is at the core of 

ResNet50, a significant advancement that has completely changed the field of 

convolutional neural networks. The network's information flow has undergone a 

paradigm shift due to this intelligent architectural addition, which has given the network a 

remarkable resilience and depth that distinguishes it from others (Jiang et al., 2022).  

Consider this invention as a collection of connected bridges that cross the layers of the 

neural network. Traditionally, moving from one layer to another requires navigating a 

series of complicated pathways, and each layer may weaken the signal, similar to the 

echo of a distant voice. The diminishing gradient challenge caused by this signal 

attenuation can make it difficult to train deep neural networks. ResNet50 effectively 

overcomes this obstacle by including these bypass bridges. These connections serve as 

conduits, enabling the information to skip over certain network layers and vault straight 

to deeper levels. The data travels these direct routes without being hindered by the 

potential dampening effects of intermediary layers. This critical architectural 

development effectively "short-circuits" the vanishing gradient problem by incorporating 

these skip connections, significantly reducing signal distortion (Jiang et al., 2022). 

This architectural feat has profound implications. The network can delve into 

unprecedented depths without sacrificing performance by enabling information to flow 

unimpeded through these bypass bridges. This is a monumental departure from the 

traditional notion that increasing network depth might lead to diminishing returns in 

terms of accuracy. ResNet50 defies this conventional constraint, achieving both depth 
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and performance, effectively rewriting the rulebook for deep convolutional neural 

networks (Rahman et al., 2023). 

The fundamental building block of ResNet50 is the residual block, which comprises two 

or more convolutional layers followed by a shortcut connection (Chou et al., 2023). The 

shortcut connection adds the original input of the block to the output of the block, 

enabling the network to learn residual mappings instead of directly learning the desired 

mappings (Rahman et al., 2023). This characteristic empowers ResNet50 to efficiently 

train deep networks and achieve state-of-the-art performance on various image 

recognition tasks (Chou et al., 2023). 

ResNet50 is often pre-trained on large-scale image datasets, where it learns to recognize a 

wide range of visual concepts. After pre-training, the network can be fine-tuned or used 

as a feature extractor for specific tasks (Jiang et al., 2022). By leveraging the learned 

representations from the lower layers, ResNet50 can effectively capture high-level 

features and generalize well to new images (Shafiq & Guet, 2022). Its ability to learn 

complex features and adapt to different tasks makes ResNet50 a powerful and versatile 

tool for plant disease identification and classification. 

2.8  Conceptual framework of the CNN Architectures: AlexNet and ResNet50 

A conceptual framework serves as a visual representation of how a researcher envisions 

the relationships between variables within a study. This model is typically presented 

graphically or diagrammatically. The researcher posits that a conceptual framework is 

essentially a hypothesized model that identifies the key concepts or variables under 

consideration within a study, elucidating their interrelationships. 
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Convolutional Neural Networks (CNNs) consist of two main components: feature 

extraction and classification. The feature extraction segment comprises an input layer, 

convolutional layer with stride and padding, rectified linear unit (ReLU), pooling layer, 

and batch normalization layer. The classification part includes a fully connected layer, 

softmax activation, and output layer (Ramanjaneyulu et al., 2020). In this study, two 

CNN architectures, namely AlexNet and ResNet50, were utilized (Fig 3.2).  

AlexNet consists of an input layer, five convolutional layers with various filter sizes (e.g., 

11x11, 5x5, and 3x3), seven ReLU layers, two normalization layers, three max-pooling 

layers, three fully connected layers, two dropout layers with a rate of 0.5, softmax 

activation, and an output layer (Purwono et al., 2023). On the other hand, ResNet50 

addresses the challenges posed by the increasing number of layers in CNNs, which can 

make learning more difficult and decrease accuracy. Residual Network (ResNet) tackles 

this issue by incorporating skip connections between layers. ResNet50 is a CNN 

architecture with 50 layers (Ganesan & Chinnapan, 2022).  
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Figure 2.3: Conceptual framework of the proposed model using AlexNet/ ResNet50 
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CHAPTER THREE 

 

MATERIALS AND METHODS 

3.1 Introduction 

This section dealt with the methodology that was used in carrying out the research. It 

describes the data sets, the pre-processing phase, the training phase, the description of the 

CNN and SVM architectures, and the evaluation of the CNN and SVM performance.  

3.2 Data Sets 

Maize leaf images of size 256x256 pixels were captured using a digital camera around 

farms within Embu County i.e KALRO Embu, and farms within Mutunduri Center, 

Kirigi Center, Manyatta Center, Kavutiri Center, Kianjakoma Center, Kivwe Center, 

Gatunduri Center, Kawanjara and ENA Area. The camera used to capture the images in 

this study was the Canon EOS 250D (Canon, UK). This camera is equipped with a range 

of advanced features that proved instrumental in obtaining high-quality images for 

disease classification. Notably, the Canon EOS 250D boasts a 24.1-megapixel advanced 

photo-system complementary metal oxide semi-conductor (CMOS) sensor, providing 

exceptional image resolution. It offers versatile shooting capabilities, including the ability 

to capture images in RAW format, which is crucial for preserving image quality during 

post-processing. The camera's DIGIC 8 processor ensures fast and efficient image 

processing, and its Dual Pixel CMOS Auto Focus system allows for accurate and rapid 

focusing, even in challenging lighting conditions. These features collectively contributed 

to the successful acquisition of the dataset used for disease classification. 

The images were captured in August and September. This period typically falls within the 

country's dry season, with relatively lower humidity and minimal rainfall. These months 
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are characterised by abundant sunshine, with the days being generally warm and clear. 

The weather is often stable and predictable, making it an ideal time for capturing images 

for analysis. The reduced cloud cover and diminished intensity of sunlight in the 

mornings and evenings during this season were advantageous for minimizing challenges 

associated with image reflections in the classification process. These climatic conditions 

provided an optimal environment for the research, allowing for collecting high-quality 

data for the CNN and SVM analysis of maize leaf diseases. 

The total number of images was 3200, with each category having 800 images as 

suggested by Wagle and R, (2021). A plant pathologist classified the diseased leaves to 

limit the number of images with multiple diseases. The study identified and classified 

three maize leaf diseases: Maize lethal necrosis, Maize streak virus and Grey leaf spot. 

Healthy leaves were used as a control in training our model (Table 3.1). 

The dataset was split into three parts for deep neural network classification. The first part 

was the training set, i.e., a collection of images to be used by the network to learn its 

hidden parameters (weights and biases) automatically. The second dataset was the 

validation set that manually adjusted parameters that could not be automatically learned 

during training. We evaluated the trained model using the validation dataset at the end of 

each epoch. This allowed us to monitor the training process and detect overfitting 

instances. The third part of the data was used after the model training to test the model's 

accuracy.   

Table 3.1:  Distribution of data sources and division of images used in training validation 

and testing per disease 

Maize leaf disease  Total data set Training data set  Validation  Testing data set 

Maize leaf necrosis  800 640 240 160 
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Some Maize leaves showing various diseases identified and classified in this study are 

shown in Figure 3.1 

    

(a)                            (b)                             (c)                               (d) 

Figure 3.1: A sample of maize leaf images representing crop disease used: (a) Grey leaf 

spot, (b) Maize lethal necrosis disease, (c) Maize streak disease, (d) Healthy maize leaf 

3.3 Pre-processing Phase  

The captured data images, initially sized at 256x256 pixels, were resized to match the 

default size of each CNN architecture. For the ResNet50 network, the images were 

adjusted to 224x224x3 pixels, while for AlexNet, the images were resized to 227x227x3 

pixels. 

3.4 Training Phase 

 

In the training phase, we employed pre-trained ResNet-50 and AlexNet networks, 

utilizing transfer learning to adapt the output layers for our specific classification task. 

For ResNet-50, the final three layers of the original network were retrained to generate 

new layers: a fully connected layer, a softmax layer, and a classification output layer. 

Similarly, transfer learning was applied to AlexNet, following a comparative approach. 

The training parameters for AlexNet were configured as follows: The number of 

Maize streak disease 800 640 240 160 

Grey leaf spot 800 640 240 160 

Healthy control 800 640 240 160 
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iterations was set to 162, with 27 iterations per epoch. The base learning rate was set to 

0.0001, and the training process was conducted for six epochs. 

 

3.5 Evaluation of Performance of AlexNet, ResNet50 and SVM in Maize Leaf 

Diseases Classification 

The performance of AlexNet, ResNet50 and SVM in classifying the maize leaf disease 

was determined by considering four values generated during the testing phase. The values 

were: 

a) True Positive (TP): The number of values of the principal class that the model 

predicts right. 

b) False Positive (FP): The number of values of the principal class that the model 

predicts is wrong. 

c) True Negative (TN): The number of values of the secondary class that the model 

predicts right.  

d) False Negative (FN): The number of values of the secondary class that the model 

predicts is wrong. 

Based on the above values, four evaluation metrics were scored: Precision, Recall, 

Accuracy, and F1 score as described below: 

i) Accuracy: Accuracy was the most common metric used in many studies. It is used 

to find out how much a model is right. It is calculated as the sum of TP and 

TN divided by the total number of predictions, as shown below: 
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Recall is a measure of the number of accurately predicted true positives to the total 

number of positive predictions.  

       

ii) Precision was  metric defines how many cases classified as TP actually are TP, 

and is calculated as the number of TP divided by the sum of TP and FP, as 

shown. 

                

iii) The F1-score is the harmonic mean between two metrics: precision and recall. It 

is used when the objective is to seek a balance between these two metrics. The 

F1 score balances both the prediction and recall metric and was calculated as 

presented below:  

       

 

Additionally, the model's performance was assessed by determining Model loss and 

Model accuracy.  Model accuracy refers to the proportion of correctly classified 

instances. It is typically used for classification tasks, whereas model loss, on the other 

hand, is a measure of how well the model can predict the target output for a given input 

instance. The loss function represents the discrepancy between the predicted and actual 

output and is used to update the model parameters during training to minimize this 

discrepancy. A lower loss indicates that the model is better able to predict the target 
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output for a given input instance (Montalbo & Hernandez, 2020). Model accuracy and 

model loss are important metrics that provide different information about the 

performance of the model. 
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CHAPTER FOUR 

RESULTS FINDINGS AND INTERPRETATIONS 

4.1 Introduction 

This chapter presents the analysed data. It highlights the findings according to the study 

objectives. The objectives of the study were to: Identify maize leaf disease (MLN, MSD 

and GLS) using AlexNet ResNet-50 and SVM models and evaluate the performance of 

the AlexNet, ResNet-50 and SVM models in the classification of MLN, MSD and GLS. 

4.2 Identification of Maize Leaf Diseases Using AlexNet, ResNet50 and SVM 

Architectures 

The results of the maize leaf disease identification using AlexNet, ResNet-50, and SVM 

models are presented in Table 4.1. All models achieved relatively high accuracies in 

identifying the three maize leaf diseases. The deep learning convolutional neural network 

models, AlexNet and ResNet50, exhibited higher accuracy than the machine learning 

SVM model. 

AlexNet demonstrated the highest accuracy across the diseases, achieving 99.9% 

accuracy for Maize Streak Disease (MSD) and a slightly lower accuracy of 95.9% for 

Maize Lethal Necrosis (MLN). ResNet-50, on the other hand, achieved the highest 

accuracy of 99% for MSD recognition and 94% for MLN. In contrast, the SVM model 

exhibited lower accuracy in disease detection, with accuracies of 89% for MSD and 78% 

for Grey Leaf Spot (GLS). For the classification of healthy maize images, AlexNet 

achieved a perfect accuracy of 100%, while SVM showed the lowest accuracy of 90%. 
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Table 4.1: Percentage accuracy in detection of maize leaf diseases by AlexNet, ResNet50 

and SVM models 

 

 

 

 

                               

 

 

 

 

On average, both CNN architectures demonstrated higher accuracy in maize leaf disease 

detection than the machine learning SVM model. AlexNet exhibited the highest average 

accuracy of 98.3%, followed by ResNet-50, and lastly, the machine learning SVM model 

with an average accuracy of 88.5% (Figure 4.1). Based on these findings, we can 

conclude that the CNN algorithms, specifically AlexNet and ResNet-50, outperformed 

the machine learning SVM model in maize leaf disease recognition. 

Disease Model Accuracy (%) 

Maze lethal necrosis AlexNet 95.9 

 

ResNet50 94.0 

 

SVM 88.0 

Maize  Streak  Disease AlexNet 99.9 

 

ResNet50 99.0 

 

SVM 89.0 

Grey leaf spot AlexNet 97.4 

 ResNet50 96.0 

 SVM 87.0 

Healthy AlexNet 100 

 

ResNet50 97.9 

 

SVM 90 
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Figure 4.1: Average accuracy in identification of the three maize leaf diseases by 

AlexNet, ResNet50 and SVM 

4.3 Performance of AlexNet, ResNet50 and SVM in Classification of Maize Leaf 

Diseases  

In the Maize Lethal Necrosis (MLN) disease classification, the AlexNet architecture 

demonstrated the best performance, achieving a precision, recall, and accuracy of 93.7%, 

96.4%, and 95%, respectively. ResNet-50 closely followed with slightly lower precision, 

recall, and accuracy percentages of 94.0%, 89.1%, and 92.9%. The machine learning 

model SVM exhibited the lowest precision, recall, and accuracy percentages of 88.0%, 

83.8%, and 88.4%, respectively (Table 4.2). 

Table 4.2: Confusion matrix and performance of AlexNet, ResNet50 and SVM in 

recognition of MLN disease 

Model  TP TN FP FN Precision  Recall F1-Score  Accuracy 

AlexNet  239 236 16 9 93.7 96.4 95.0 95.0 

ResNet50  188 273 12 23 94.0 89.1 91.5 92.9 

SVM 176 266 24 34 88.0 83.8 85.9 88.4 

Where TP represent true positive, TN- true negative, FP-false positive and FN- false 

negative 
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Similarly, for the classification of Maize Streak Disease, AlexNet outperformed all other 

models and achieved the highest recall of 100%. ResNet50 followed closely behind. In 

contrast, the SVM model recorded the lowest precision (89.0%), recall (85.6%), and 

accuracy (89.6%) for MSD classification (Table 4.3).  

Table 4.3: Confusion matrix and performance of AlexNet, ResNet50 and SVM in 

recognition of MSD 

Model  TP TN FP FN Precision  Recall F1-Score  Accuracy 

AlexNet 249 250 1 0 99.6 100.0 99.8 99.8 

ResNet50 197 299 3 1 98.5 99.5 99.0 99.2 

SVM 178 270 22 30 89.0 85.6 87.3 89.6 

Where TP represent true positive, TN- true negative, FP-false positive and FN- false 

negative 

 

For Grey Leaf Spot fungal disease classification, AlexNet demonstrated the highest 

precision, recall, F1-score, and accuracy of 98.8%. ResNet-50 followed with slightly 

lower performance. The SVM model exhibited the lowest recall value of 81.7% for GLS 

classification (Table 4.4). 

Table 4.4: Confusion matrix and performance of AlexNet, ResNet50 and SVM in 

recognition of GLS disease 

Model TP TN FP FN Precision  Recall F1-Score  Accuracy 

AlexNet  247 243 3 7 98.8 97.2 98.0 98.0 

ResNet50 192 283 8 17 96.0 91.9 93.9 95.0 

SVM 174 261 26 39 87.0 81.7 84.3 87.0 

Where TP represent true positive, TN- true negative, FP-false positive and FN- false 

negative 
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4.4 Model Accuracy and Loss Curves for CNN (Alexnet and Resnet50) 

Architectures 

The accuracy of a model provides insights into its overall performance by indicating the 

correct classification rate, while the loss of a model reflects the quality of its predictions. 

Ideally, a model should exhibit high accuracy and low loss. During the validation of 

AlexNet architecture, high model accuracy (Fig. 4.2 a) and low model loss (Fig. 4.2 b) 

were observed. The model's accuracy increased with each epoch while the loss function 

decreased (Figure 4.2 a, b). Similarly, ResNet-50 demonstrated high model accuracy 

(Fig. 4.3 c) and low model loss (Fig. 4.3 d). These findings highlight the exceptional 

performance, accuracy, and specificity of both AlexNet and ResNet50 in identifying and 

classifying maize leaf diseases. Additionally, the low model loss indicates that the 

predictions generated by these two CNN architectures were of high quality. 

 

Figure 4.2: Model accuracy (a) and model loss (b) curves for the proposed models for 

AlexNet. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
 

Figure 4.3: Model accuracy (c) and model loss curves (d) for ResNet50 
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CHAPTER FIVE 

SUMMARY OF FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Introduction 

The discussion section delves into the compelling outcomes of this study, revealing the 

remarkable efficacy of the AlexNet and ResNet50 architectures in the realm of maize leaf 

disease identification. These architectures demonstrated outstanding average accuracies 

of 98.3% and 96.6%, respectively, underscoring their prowess in accurate classification. 

On the other hand, the machine learning SVM model, with an accuracy of 88.5%, 

showcased comparatively lesser performance. 

5.2 Summary of Findings 

The difference in disease identification accuracy between AlexNet and ResNet50 in this 

study can be attributed to their distinct designs. AlexNet, with its fewer layers, exhibits 

faster training speed and lower susceptibility to overfitting. This aligns with findings 

from previous research by Chow et al. (2023), who utilized a "dropout" regularization 

technique to mitigate overfitting and expedite model training. In contrast, ResNet-50, 

being a deeper and more intricate model compared to AlexNet, can capture more 

complex features within the data. However, this complexity also makes ResNet50 more 

prone to overfitting, particularly when dealing with small or noisy datasets. This 

observation is in line with the results reported by Sood and Singh (2020), who compared 

ResNet50 and VGG16 for detecting leaf rust in wheat and found that ResNet50 achieved 

a validation accuracy of 60% with datasets containing fewer than 300 samples, while 

VGG16 achieved an accuracy of 93.33%. 
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Furthermore, the lower accuracy of the support vector machine in maize leaf disease 

identification compared to the CNN models (AlexNet and ResNet-50) can be explained 

by the nature of CNNs designed explicitly for image data, which is typically high-

dimensional and complex. CNNs can automatically learn relevant features from images, 

such as textures, shapes, and patterns, without manual feature extraction. In contrast, 

SVMs require explicit feature definitions, which can be time-consuming and less 

effective at capturing relevant features. CNNs also have the advantage of learning 

hierarchical representations, allowing them to capture low-level and high-level features 

important for plant disease classification. SVMs, on the other hand, are typically limited 

to linear or kernel-based models, which may not capture complex and non-linear 

relationships in the data as effectively. 

The high performance of AlexNet and ResNet50 in terms of accuracy, precision, and 

recall can be attributed to the adoption of transfer learning in this study. This finding is 

consistent with earlier research by Chen et al. (2020), who reported increased accuracy in 

identifying rice lesion images in complex scenarios through transfer learning, achieving 

an average accuracy of 94%, surpassing standard training accuracy. 

5.3 Conclusion 

The results of this study demonstrate the effectiveness of AlexNet and ResNet50 

architectures in the identification of maize leaf diseases, achieving average accuracies of 

98.3% and 96.6%, respectively. The machine learning SVM model yielded the lowest 

accuracy of 88.5%. These findings highlight the superior performance of the 

convolutional neural networks, particularly AlexNet and ResNet50, in feature extraction 

and accurate classification of maize leaf diseases. Evaluation parameters presented in 

Table 4.2 further support the superiority of AlexNet and ResNet50 over SVM. AlexNet 
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consistently outperformed the other models, followed by ResNet50, while SVM obtained 

the lowest scores. These findings reinforce the significance of employing AlexNet and 

ResNet50 for classifying maize leaf diseases. By leveraging these advanced CNN 

models, farmers and stakeholders involved in maize crop protection can benefit from 

enhanced accuracy and specificity in disease detection, surpassing the limitations of 

traditional visual analysis methods commonly used in the field. Adopting the two CNN 

models offers the advantage of early disease identification, enabling prompt intervention 

measures to prevent the spread of diseases before they cause significant economic 

damage. This proactive approach can reduce crop yield losses and maintain overall crop 

quality. By integrating state-of-the-art technology like AlexNet and ResNet50 into maize 

disease management practices, farmers can make informed decisions regarding disease 

control strategies and ultimately improve their crop production and profitability. 

5.4 Recommendations 

Based on the findings of this study, the following recommendations are made for future 

research: 

i. This study focused on specific maize leaf diseases, such as Grey Leaf Spot, Maize 

Lethal Necrosis, and Maize Streak Disease. Future research could explore other 

economically significant maize diseases, such as Northern Leaf Blight (NLB), to 

broaden our understanding of the various threats to maize production. This 

models could also be used to classify and identify other diseases in various crops 

in Kenya. 

ii.  While the current research utilized a computer-based model for disease 

identification, it is recommended to develop a mobile-based model. A mobile 

application would enable farmers and stakeholders to access the disease 



52 

 

identification system on their smartphones or tablets, facilitating real-time disease 

detection and prompt interventions. 

iii. To further enhance disease classification accuracy, ensemble methods are 

suggested. The overall performance and robustness of the disease identification 

system can be improved by combining different classifiers, such as Support 

Vector Machine (SVM), with other machine learning models. 

iv. The availability of comprehensive and diverse datasets is crucial for effectively 

training Convolutional Neural Networks models. Therefore, there is a need to 

create more extensive databases containing a wide variety of maize leaf disease 

images. This will enable CNN models to learn from more diverse examples and 

enhance their accuracy and generalization capabilities. 
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