Department of Natural Resources

Permanent URI for this collectionhttp://localhost:4000/handle/20.500.12092/1949

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Relationships Between Cattle and Biodiversity in Multiuse Landscape Revealed by Kenya Long-Term Exclosure Experiment
    (Elsevier, 2018-05) Kimuyu, Duncan M.; Young, Truman P.; Porensky, Lauren M.; Riginos, Corinna; Veblen, Kari E.; Odadi, Wilfred O.; Charles, Grace K.; Young, Hillary S.
    On rangelands worldwide, cattle interact with many forms of biodiversity, most obviously with vegetation and other large herbivores. Since 1995, we have been manipulating the presence of cattle, mesoherbivores, and megaherbivores (elephants and giraffes) in a series of eighteen 4-ha (10-acre) plots at the Kenya Long-term Exclosure Experiment. We recently (2013) crossed these treatments with small-scale controlled burns. These replicated experimental treatments simulate different land management practices. We seek to disentangle the complex relationships between livestock and biodiversity in a biome where worldwide, uneasy coexistence is the norm. Here, we synthesize more than 20 yr of data to address three central questions about the potentially unique role of cattle in savanna ecology: 1) To what extent do cattle and wild herbivores compete with or facilitate each other? 2) Are the effects of cattle on vegetation similar to those of wildlife, or do cattle have unique effects? 3) What effects do cattle and commercial cattle management have on other savanna organisms? We found that 1) Cattle compete at least as strongly with browsers as grazers, and wildlife compete with cattle, although these negative effects are mitigated by cryptic herbivores (rodents), rainfall, fire, and elephants. 2) Cattle effects on herbaceous vegetation (composition, productivity) are similar to those of the rich mixture of ungulates they replace, differing mainly due to the greater densities of cattle. In contrast, cattle, wild mesoherbivores, and megaherbivores have strongly guild-specific effects on woody vegetation. 3) Both cattle and wild ungulates regulate cascades to other consumers, notably termites, rodents, and disease vectors (ticks and fleas) and pathogens. Overall, cattle management, at moderate stocking densities, can be compatible with the maintenance of considerable native biodiversity, although reducing livestock to these densities in African rangelands is a major challenge.
  • Thumbnail Image
    Item
    Fire disturbance disrupts an acacia ant–plant mutualism in favor of a subordinate ant species
    (Wiley and sons, 2017-03) Kimuyu, Duncan K.; Sensenig, Ryan L.; Guajardo, Juan C. Ruiz; Veblen, Kari E.; Riginos, Corinna; Young, Truman P.
    Although disturbance theory has been recognized as a useful framework in examining the stability of ant–plant mutualisms, very few studies have examined the effects of fire disturbance on these mutualisms. In myrmecophyte-dominated savannas, fire and herbivory are key drivers that could influence ant–plant mutualisms by causing complete colony mortality and/or decreasing colony size, which potentially could alter dominance hierarchies if subordinate species are more fire resilient. We used a large-scale, replicated fire experiment to examine long-term effects of fire on acacia–ant community composition. To determine if fire shifted ant occupancy from a competitive dominant to a subordinate ant species, we surveyed the acacia–ant community in 6–7 yr old burn sites and examined how the spatial scale of these burns influenced ant community responses. We then used two short-term fire experiments to explore possible mechanisms for the shifts in community patterns observed. Because survival of ant colonies is largelydependent on their ability to detect and escape an approaching fire, we first tested the evacuation response of all four ant species when exposed to smoke (fire signal). Then to better understand how fire and its interaction with large mammal herbivory affect the density of ants per tree, we quantified ant worker density in small prescribed burns within herbivore exclusion plots. We found clear evidence suggesting that fire disturbance favored the subordinate ant Crematogaster nigriceps more than the dominant and strong mutualist ant C. mimosae, whereby C. nigriceps (1) was the only species to occupy a greater proportion of trees in 6–7 yr old burn sites compared to unburned sites, (2) had higher burn/unburn tree ratios with increasing burn size, and (3) evacuated significantly faster than C. mimosae in the presence of smoke. Fire and herbivory had opposite effects on ant density per meter of branch for both C. nigriceps and C. mimosae, with fire decreasing ant densities per meter of branch and the presence of large herbivores increasing ant density. Taken together, these experiments suggest that major ecosystem disturbances like fire can disrupt mutualistic associations and maintain diversity in partner qualityand identitydespite a clear dominance hierarchy.
  • Thumbnail Image
    Item
    Fire disturbance disrupts an acacia ant–plant mutualism in favor of a subordinate ant species
    (EcologicalSocietyof America, 2017) Kimuyu, Duncan K.; Sensenig, Ryan L.; Guajardo, Juan C. Ruiz; Veblen, Kari E.; Riginos, Corinna; YOUNG, Truman P.
    Although disturbance theory has been recognized as a useful framework in examining the stability of ant–plant mutualisms, very few studies have examined the effects of fire disturbance on these mutualisms. In myrmecophyte-dominated savannas, fire and herbivory are key drivers that could influence ant–plant mutualisms by causing complete colony mortality and/or decreasing colony size, which potentially could alter dominance hierarchies if subordinate species are more fire resilient. We used a large-scale, replicated fire experiment to examine long-term effects of fire on acacia–ant community composition. To determine if fire shifted ant occupancy from a competitive dominant to a subordinate ant species, we surveyed the acacia–ant community in 6–7 yr old burn sites and examined how the spatial scale of these burns influenced ant community responses. We then used two short-term fire experiments to explore possible mechanisms for the shifts in community patterns observed. Because survival of ant colonies is largelydependent on their ability to detect and escape an approaching fire, we first tested the evacuation response of all four ant species when exposed to smoke (fire signal). Then to better understand how fire and its interaction with large mammal herbivory affect the density of ants per tree, we quantified ant worker density in small prescribed burns within herbivore exclusion plots. We found clear evidence suggesting that fire disturbance favored the subordinate ant Crematogaster nigriceps more than the dominant and strong mutualist ant C. mimosae, whereby C. nigriceps (1) was the only species to occupy a greater proportion of trees in 6–7 yr old burn sites compared to unburned sites, (2) had higher burn/unburn tree ratios with increasing burn size, and (3) evacuated significantly faster than C. mimosae in the presence of smoke. Fire and herbivory had opposite effects on ant density per meter of branch for both C. nigriceps and C. mimosae, with fire decreasing ant densities per meter of branch and the presence of large herbivores increasing ant density. Taken together, these experiments suggest that major ecosystem disturbances like fire can disrupt mutualistic associations and maintain diversity in partner qualityand identitydespite a clear dominance hierarchy
©Karatina University